
1. AWS CloudFormation (AWS Service)

AWS CloudFormation performs the crazy party trick of enabling you to manage your complete AWS infrastructure

and resources from a text file. The formatted YAML or JSON code you write in the AWS CloudFormation template

describes your AWS infrastructure and the resources you need. CloudFormation does the rest, provisioning,

configuring and deploying everything for you. It also handles dependencies between resources, removing another

piece of complexity from the puzzle.

Without a template, you would have to set everything up manually using the AWS management console or CLI. You

would also have to make note of all the resources involved, especially if you wanted to replicate your work for

another environment. On the other hand, templates can be used on an ongoing basis, moving you away from the

tedium of manually executing multiple steps every time you need to make a change. For example, extending your

environment by adding a few more functions are easy with a template.

Sample templates

Pricing

You only pay for what you use, with no minimum fees and no required upfront commitments. There is no additional

charge for using AWS CloudFormation with resource providers in the following namespaces: AWS::*, Alexa::*, and

Custom::*. In these cases, you pay for AWS resources such as Amazon Elastic Compute Cloud (EC2) instances, Elastic

Load Balancing load balancers, etc. created using AWS CloudFormation the same as if you had created them

manually.

Provisioning an EC2 instance with CloudFormation

1st of all we want to configure AWS CLI.

After that create ec2.yaml and add following code.

AWSTemplateFormatVersion: 2010-09-09

Description: EC2 Instance Create Using CloudFormation

Resources:

 WebAppInstance:

 Type: AWS::EC2::Instance

 Properties:

 ImageId: ami-002068ed284fb165b #AMI ID Unique to Region

 InstanceType: t2.micro

 KeyName: ohio-key #Add keypair name

 SecurityGroupIds:

 - !Ref WebAppSecurityGroup

 WebAppSecurityGroup:

 Type: AWS::EC2::SecurityGroup

 Properties:

 GroupName: !Join ['-', [webapp-security-group, dev]]

 GroupDescription: 'Allow HTTP/HTTPS and SSH inbound and outbound traffic'

 SecurityGroupIngress:

 - IpProtocol: tcp

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-templates-services-us-west-2.html#w2ab1c33c58c13c17

 FromPort: 80

 ToPort: 80

 CidrIp: 0.0.0.0/0

 - IpProtocol: tcp

 FromPort: 443

 ToPort: 443

 CidrIp: 0.0.0.0/0

 - IpProtocol: tcp

 FromPort: 22

 ToPort: 22

 CidrIp: 0.0.0.0/0

 WebAppEIP:

 Type: AWS::EC2::EIP

 Properties:

 Domain: vpc

 InstanceId: !Ref WebAppInstance

 Tags:

 - Key: Name

 Value: !Join ['-', [webapp-eip, dev]]

Outputs:

 WebsiteURL:

 Value: !Sub http://${WebAppEIP}

 Description: WebApp URL

After that run following command for create CloudFormation Stack.

aws cloudformation create-stack --stack-name ec2-stack --template-body file://ec2.yaml --output yaml

file://///ec2.yaml

Go to AWS console and search CloudFormation and you can see the newly created stack and you can

see output details.

After that go to EC2 Service and you can see the newly created EC2 instance.

If you want you can update stack details using following command.

aws cloudformation update-stack --stack-name ec2-stack --template-body file://ec2.yaml --output

yaml

file://///ec2.yaml

Finally, you can destroy AWS Infrastructure using the following command. Please remind that if you

destroy you will lose created infrastructure.

aws cloudformation delete-stack --stack-name ec2-stack --output yaml

After that go to AWS Console and you can see Your EC2 Instance is terminated.

2. Terraform - by HashiCorp

Terraform is an infrastructure as code (IaC) tool that allows you to build, change, and version

infrastructure safely and efficiently. This includes low-level components such as compute instances,

storage, and networking, as well as high-level components such as DNS entries, SaaS features, etc.

Terraform can manage both existing service providers and custom in-house solutions.

Terraform allows you to create infrastructure in configuration files(tf files) that describe the topology of

cloud resources. These resources include virtual machines, storage accounts, and networking interfaces.

Pricing

* We can use Free Version for IaC Provision.

Provisioning an EC2 instance with Terraform

• Create a local directory in your machine and go inside this folder. After that configure aws cli.

• Create create_ec2.tf file and added the following code here.

resource "aws_instance" "myFirstInstance" {

 ami = "ami-0629230e074c580f2" #unique to region

 key_name = "ohio-key" #use your pemfile

 instance_type = "t2.micro"

 security_groups= ["security_jenkins_port"]

 tags= {

 Name = "jenkins_instance"

 }

}

#Create security group with firewall rules

resource "aws_security_group" "security_jenkins_port" {

 name = "security_jenkins_port"

 description = "security group for jenkins"

 ingress {

 from_port = 8080

 to_port = 8080

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 ingress {

 from_port = 22

 to_port = 22

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 # outbound from jenkis server

 egress {

 from_port = 0

 to_port = 65535

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 tags= {

 Name = "security_jenkins_port"

 }

}

Create Elastic IP address

resource "aws_eip" "myFirstInstance" {

 vpc = true

 instance = aws_instance.myFirstInstance.id

tags= {

 Name = "jenkins_elstic_ip"

 }

}

• Run “terraform init” command will initialize terraform project. You can see like that.

• Run “terraform plan” command will show how many resources will be added.

• Run “terraform apply” command and enter “yes”. After that, you can see your ec2 instance and

security group created.

• Go to AWS Console and see newly created EC2 Instance.

• Run “terraform state list” for a view list of the resources created by Terraform.

• Finally, run “terraform destroy” to remove previously created all services. After that run the

“terraform state list” command you haven’t seen anything.

